ISSN: 0972-3641

No 2 phis Agb As -

EDITORS

Debasis Bhattacharya Visva-Bharati University, Santiniketan,India

Carlo Bianca Laboratorie de Physique Statistique, Paris, France

Vol. 26 No. 3 (January - June, Special Issue 2022 Part - 2) UGC CARE APPROVED JOURNAL

Editor In Chief

Debasis Bhattacharya Visva-Bharati University, Santiniketan, India

Carlo Bianca Laboratorie de Physique Statistique, Paris, France

Indexing : The journal is index in UGC, Researchgate, Worldcat

Founder Editor

A.K.Basu

University of Calcutta, India

Editors

Prof . Debasis Bhattacharya Visva-Bharati University, Santiniketan,India

Carlo Bianca Laboratorie de Physique Statistique, Paris, France

Yuri E. Gliklikh

Professor of Mathematics Faculty Voronezh State University Voronezh, Russia

Prof. Sugata Sen-Roy University of Calcutta, Calcutta India

Managing Editor

Martin Bohner Missouri University of Science and Technology Rolla, Missouri USA

Editorial Board

M. Ahsanullah Rider University, USA

Elias Camouzis National and Kapodistrian University of Athens, Department of Economics, Sofokleous 1, 10559, Athens, Greece

B. Chaouchi

Energy and Smart Systems Laboratory (LESI), Khemis Miliana University, Algeria **C.C.Y. Dorea** University of Brasilia,Brazil

Khalil Ezzinbi

Cadi Ayyad University, Faculty of Sciences Semlalia, Department of Mathematics Morocco

Nour-Eddin EL FAOUZI

Head of Unit | Transport and Traffic Engineering Laboratory (LICIT) Université de Lyon | IFSTTAR and ENTPE

Lidia Z. Filus

Professor and Chair of Mathematics Mathematics Department Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA

Jesus Enrique Garcia

University of Campinas Brazil

Enrico Guastaldi

Head of Applied and Environmental Laboratory, CGT Via Vetri Vecchi 34, 52027 - San Giovanni Valdarno - Arezzo – Italy

Shezhana Hristova

Plovdiv University Department of Applied Mathematics and Modeling Plovdiv, BULGARIA

N. Mukhopadhyaya,

University of Connecticut, USA

Mikhail Moklyachuk

Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrska st.64, Kyiv 01601, Ukraine

Donal O'Regan,

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

J.S.Rao

University of California, Santa Barbara, USA

George G. Roussas University of California ,Davis California,USA

> Naseer Shahzad Department of Mathematics King Abdulaziz University Jeddah, Saudi Arabia

V.A. Gonzalez-Lopez

University of Campinas Brazil

Sencer Yeralan

University of Florida, Gainesville, Florida, USA. Yasar University, Izmir, Turkey

Xiaowen Zhou Department of Mathematics and Statistics Concordia University Canada

A.Ganesh

Asst.Professor, Department of Mathematics, RUSA Unit Project Coordinator, Govt. Arts and Science College, Hosur-635 109, Tamil Nadu, India

D. Jaya Shree

Department of Mathematics, Govt. Arts and Science College, Hosur-635 109, Tamil Nadu, India

MuK Publications & Distributions

F-2562, Palam Vihar Gurgaon-122017 (Haryana) E-mail: mukpublications@gmail.com https://www.mukpublications.com

Stochastic Modeling & Applications

Special Issue

On

Recent Research on Management, Applied Sciences and Technology

Stochastic Modeling & Applications

Vol. 26 No. 3 (January - June, Special Issue 2022 Part - 2) UGC CARE APPROVED JOURNAL

CONTENTS

Research Papers

THE VALOR IN VULNERABILITY THROUGH THE NARRATIVES OF INDIRA 706 – 709 GOSWAMI

SHILPI PRIYA SAIKIA

WOMEN IN INSURGENCY LITERATURE WITH SPECIAL REFERENCE TO 710–712 **ARUPAPATANGIA KALITA'S THE STORY OF FELANEE**

SHILPI PRIYA SAIKIA

MOLECULAR CONFORMATION, ELECTRONIC TRANSITIONS AND 713-725 SPECTROSCOPIC (FT-IR, UV-VIS) CHARACTERIZATION OF N-CARBOBENZOXY-L-VALINE: A DFT APPROACH

D. DEVI, M. M. ARMSTRONG ARASU AND A. MARY GIRIJA

MOLECULAR STRUCTURE, VIBRATIONAL, UV-VIS, HOMO-LUMO, MEP, NLO, 726-740NBO ANALYSIS OF N^{α} -CARBOBENZOXY -L-ARGININE

A. MARY GIRIJA, M. M. ARMSTRONG ARASU* AND D. DEVI

INVESTIGATIONS ON N^{α}-CARBOBENZOXY -L-ARGININE BY NMR 741 – 756 SPECTROSCOPY, DFT AND MOLECULAR DOCKING STUDIES

A. MARY GIRIJA, M. M. ARMSTRONG ARASU AND D. DEVI

MORPHOGENETIC EFFECTS OF THE NON-STEROIDAL MIMIC, RH-5849, ON 757 – 762 THE RICE MOTH CORCYRA CEPHALONICA ST. (LEPIDOPTERA: GALLERIINAE)

GANJI BHAGYALAKSHMI AND SABITA RAJA

EFFECT OF ORIENTATION ON THERMAL COMFORT OF CLASSROOM – THE 763 – 771 **STUDY OF COLLEGE CLASSROOM, PUNE, MAHARASHTRA**

AR. GEETA NAGARKAR AND PARAG NARKHEDE

EVALUATION OF PACKET LOSSES IN INPUT-QUEUED SWITCH WITH RED AND 772 – 780 **BLUE**

DR. D. RAGHUPATHI KUMAR

TOXICITY EVALUATION OF NONSTEROIDALECDYSONE AGONIST, RH-5849 ON 781 – 785 **RICE MOTH, CORCYRA CEPHALONICA (STAINTON)**

GANJI BHAGYALAKSHMI AND SABITA RAJA

PREDICTION OF DRUG TARGET IN VARICELLA ZOSTER ON HUMAN HOST BASED ON GRAPH THEORITICAL APPROACH	786 – 791
S. SUDHA AND RAJESWARI SOMASUNDARAM	
ANALYTICS OF DIGITAL BRANDING AND CONSUMERS BEHAVIOR	792 – 794
SATYENDRA KUMAR CHHIPA, SANJAY GOUR AND REENA GUPTA	
PLACEMENT OF DG IN TRANSMISSION NETWORK FOR FINDING THE VOLTAGE PROFILE CURVE IMPROVEMENT, POWER LOSS REDUCTION, IMPROVE THE POWER TRANSFER CAPACITY AND INCREASE THE LOADING CAPACITY OF THE GIVEN IEEE 14 BUS TEST SYSTEM	795 - 800
RAKESH BHADANI AND K. C. ROY	
ERGONOMICS WITH AI TO REDUCE WMSDS	801 - 811
SUNIL NAYAK, TEJAS V. SHAH AND DEEPALI H. SHAH	
EFFECTIVENESS OF THILIN MODELS IN THE DEVELOPMENT ACHIEVEMENT AMONG ELEMENTARY SCHOOL PUPILS IN IRAQ	812 - 817
NOOR MOHAMMED KADHIM AND R. MEENAKSHI	
USE OF BLOGS IN IMPROVING STUDENTS' SECOND LANGUAGE LEARNING ABILITY	818 - 820
N. SATHIYA AND K. VEERAMANI	
A NUMERICAL SIMULATION OF NATURAL CONVECTION IN A PORUS MEDIA WITH NANOFLUID	821 - 832
SANJOY KUMAR MUKHERJEE, SATEESH KUMAR, DR. MUKESH PANDEY, JAI KUMAR, RAJ JAYSWAL AND SUNNY BALMIKI	
INTEREST IN LEARNING ENGLISH AND ACHIEVEMENT AMONG HIGH SCHOOL STUDENTS	833 - 839
NOOR MOHAMMED KHADIM AND DR. R. MEENAKSHI	
THE FISCAL POLICY ON THE ECONOMIC GROWTH OF IRAQ AND ADDRESSING INFLATION PROBLEMS	840 - 844
MUSTAFA MAHDI ABDULRIDHA AND S. PUSHPARAJ	
THE LINK BETWEEN RURAL CHILD LABOR AND POVERTY IN WEST BENGAL	845 - 856
RUNA ROY	
FINDING THE LUXURY FACTOR IN THE SUPER LUXURY RESIDENTIAL PROJECTS FROM DEVELOPERS' PERSPECTIVE- A STUDY OF THE SUPER LUXURY PROJECTS IN AHMEDABAD CITY	857 - 862
AMIT A. MEHTA AND TEJAS DAVE	

COMPARATIVE STUDY OF SEGMENTATION ALGORITHMS AND EVALUATION 863 – 874 **OF AN IMPROVED ALGORITHM FOR GLIOMA TUMOR DETECTION**

PRANAV P, SAMHITA P AND JOSHI MANISHA S

DIVISION WITH THE VEDIC METHODS

KAVITA S. CHAUHAN AND MOHD. FARMAN ALI

CONSUMER PERCEPTIONS ABOUT OTT PLATFORMS IN KOLKATA AND 879 – 890 **ADJACENT AREAS: A STUDY**

ANIS CHATTOPADHYAY AND SUJIT MUKHERJEE

A STUDY OF INDIA'S MUTUAL FUND PROGRESSION AND PERFORMANCE 891 – 896

MRUNAL ARUN MULE

SHAKESPEARE'S INFLUENCE ON INDIAN POPULAR CULTURE IN THE 897–905 TWENTY-FIRST CENTURY

S. K. MASUMMINHAJ HOSSAIN

EMOTIONAL INTELLIGENCE AMONG THE STUDENTS: A SYSTEMATIC 906 - 909 **REVIEW**

SAMIRAN KALITA, SANGITA BORAH AND DHANANJOY DEBNATH

MARKOVIAN HETEROGENEOUS QUEUE WITH SERVICE RATE DEPENDING ON 910 – 924 DURATION OF TIME IN TWO STATES

GAJENDRA KUMAR SARASWAT AND VIJAY KUMAR

COMPARATIVE STUDY OF SATISFACTION OF TOURISTS TOWARDS THE 925 – 929 QUALITY OF SERVICES AT AGRITOURISM CENTRES IN PUNE AND SATARA

B. S. SAWANT AND MAYURA S. KADAM

TO STUDY EFFECT OF ONLINE EDUCATION ON STUDENTS WITH REFERENCE 930 – 939 **TO HIGHER EDUCATION**

NICOLE D' SILVA, ABEDA SHAIKH AND BERNADETTE D'SILVA

DYNAMICS OF TRADITIONAL MEDICINAL KNOWLEDGE AMONGST THE 940–943 **TRIBAL WOMEN IN INDIA: A SOCIOLOGICAL PERSPECTIVE**

S. GENANI AND C. VENKATACHALAM

TRANSFORMATION OF RURAL LANDSCAPE IN CHANDIGARH PERIPHERY: 944 – 955 A GEOGRAPHICAL ANALYSIS USING GEO-INFORMATICS

RAVINDER SINGH AND RAVINDER KAUR

EXPLORING ART INTEGRATED BLENDED LEARNING APPROACH IN 956–963 **LEARNING CHEMISTRY (ELEMENTS) AMONG CLASS 10 STUDENTS**

S. SRIPRIYA AND R. RAMESH

MEDIATION ANALYSIS: A STUDY ON ONLINE BABY CARE PRODUCTS 964 – 975

PREETI CHOPRA AND SHAMILY JAGGI

MYSTICISM IN WHITMAN'S POETRY

MULTIPLE DISCRIMINANT ANALYSIS FOR SURVEY DATA: A NON-NORMAL PERSPECTIVE	981 – 992
INDIRA A AND R. NEELAMEGAM	
PRIMARY LEVEL BASIC ARITHMETIC SKILL DEVELOPMENT OF CHILDREN WITH MILD INTELLECTUAL DISABILITY THROUGH MOBILE APPLICATIONS	993 – 997
M. PRABAVATHY AND R. SIVARANJANI	
THE STUDY OF INNOVATIVE HR PRACTICES DURING COVID-19	998 - 1001
PROF. PRIYETA PRIYADARSHINI, PROF. ARCHANA BHAUSHET SAKURE-UBHE, PROF. S.S RANJAN AND PROF. MAKARAND POLE	
A MATHEMATICAL MODEL FOR ACCESS CONTROL THROUGH TRUST MANAGEMENT IN UBIQUITOUS COMPUTING	1002 - 1009
D. S. SHELAR, P. G. ANDHARE, S. B. GAIKWAD AND P. A. THAKRE	
MATERNAL & CHILD HEALTH INTERVENTIONS WITH SOCIOECONOMIC TRANSITION AMONG THE LOWER STRATUM POPULATION WITH REFERENCE FROM NFHS-5	1010- 1022
SOUMYAJIT SINGHA ROY AND MITHUN SIKDAR	
WOMEN AS ALIENATED FIGURES IN PHILIP LARKIN'S POETRY	1023 - 1028
BAPI DAS	
ACADEMIC OPTIMISM: A SYSTEMATIC REVIEW	1029 - 1045
GAURI SHIKHA GOGOI AND JEHERIN NESHA	
IMPACT OF ICT ON TEACHING AND EVALUATION	1046 - 1048
MITTAL SHAH AND KUSUM YADAV	
EXPLOITATION OF VARIOUS MEASUREMENT TECHNIQUES FOR POSITIONING SYSTEMS OVER THE INDIAN SUBCONTINENT	1049 - 1053
P. SIRISH KUMAR, B. RAMARAO AND K. BHANUCHANDRA RAO	
DISCONNECTED EVEN SUM GRAPHS	1054 - 1056
CHINJU KRISHNA K, DAVID RAJ C AND RUBIN MARY K	
POSITIVE AND NEGATIVE IMPACT OF COVID ON DIFFERENT SECTORS OF INDIAN ECONOMY	1057 – 1072
ASHOK H. S, SINDHUJA C. V, GOWRISHA AND DHARANI S	
STATISTICAL ANALYSIS OF REPORTED CASES OF MALARIA AT MORADABAD IN UTTAR PRADESH FOR THE PERIOD 2016 - 2020	1073 – 1080

ANSHUL DUBEY AND RAJAN SINGH

SECURING IOT WITH BLOCKCHAIN-BASED SYSTEM FOR ATTENDANCE 1081 – 1088 MANAGEMENT

PRIYANKA DONGRE AND PUSHPNEEL VERMA

CAVE PAINTINGS OF INDIA	1089 - 1093
KARISHMA HAZARIKA	
REVISITING ISLANDS IN POETRY: ACROSS LANDS AND AGES	1094 - 1098
PULAKESH GHOSH	
WORKING CAPITAL MANAGEMENT PRACTICES AND ITS IMPACT ON FINANCIAL PERFORMANCE OF SMES: EMPIRICAL EVIDENCE FROM LISTED INDIAN SMES	1099 – 1111
ASHISH SHARMA, M. KHALID AZAM AND PRASHANT GUPTA	
IDENTIFICATION AND ANALYSIS OF CONTEMPORARY TEACHING PRACTICES OF PRE-UNIVERSITY TEACHERS IN KARNATAKA	1112 – 1124
SAMSON R VICTOR, MARIA JOSEPHINE AROKIA MARIE S, RAMESH M AND HARIHARAN R	
WORK FORCE PERTICIPATION AMONG RURAL WOMEN: A STUDY OF HOJAI DISTRICT OF ASSAM	1125 – 1131
MUNNA RABHA, YEASMINA BEGUM AND BINOD CHETRY	
NON-COMMERCIAL MARKETING	1132 - 1140
SIMRAN AND WASEEM AHMAD KHAN	
A STUDY ON IMPACT OF SUPERVISOR'S SUPPORT ON EMPLOYEE HEALTH PROGRAMS	1141 - 1147
GUNJAN HASIJANI	
FINANCIAL PERFORMANCE ANALYSIS AND THE STRATEGIES ADOPTED BY MAHINDRA HOLIDAYS & RESORTS INDIA LIMITED	1148 – 1154
CMA VANSHIKA VIJAY AHUJA AND CA. BHAVNA MUKESH BINWANI	
ANALYSIS OF SOCIAL MEDIA INFLUENCE ON CONSUMER PURCHASING BEHAVIOUR	1155 – 1158
RAVIKUMAR GUPTA AND SWATI SABALE	
ANALYSIS OF ONLINE CLASSROOM LEARNINGBENEFITS AND CHALLENGESOF THE STUDENTS DURING COVID-19	1159 – 1162
GULABCHAND K GUPTA AND RAVIKUMAR GUPTA	

2019 PANDEMIC - A TURNING POINT FOR WOMEN EMPOWERMENT THROUGH 1163 – 1170 **DIGITAL TECHNOLOGY**

BAGESHREE P. BANGERA BANDEKAR AND NEELAM DADHIBAL JAISWAR

AN ANALYTICAL STUDY ON TELECOM COMPANIES WITH RESPECT THEIR 1171 – 1180 ACCOUNTING PRACTICES AND IMPACT ON SOCIETY

JYOTI NAGDEV AND CA. KISHORE PESHORI

TO STUDY COLLEGE STUDENTS PERCEPTION TOWARDS ONLINE LEARNING 1181 - 1186 IN COVID-19 SITUATION WITH SPECIAL REFERENCE TO AMBERNATH CITY

ANITA MANNA AND RAKHI V. GULATI

CALCINED TAMARIND SEED HUSK POWDER AS AN EFFECTIVE 1187 – 1191 PHOTOCATALYST FOR THE DEGRADATION OF METHYLENE BLUE DYE

ASHOK V. BORHADE*, RANJANA P. BHADANE, SACHIN S. KUSHARE, SANJAY R. KANKAREJAND ABHISHEK S. KALE

THE EVALUATION OF STEEL FIBER REINFORCED CONCRETE WITH SILICA 1192 - 1202 FUME USING ULTRASONIC PULSE VELOCITY

SANDEEP R. GAIKWAD AND DR. ANIL. Z. CHITADE

DYNAMIC INTERACTION OF EXCHANGE RATE AND STOCK MARKET: AN 1203 - 1210 EMPIRICAL EVIDENCE FROM INDIA

DR. CHETNA MAKWANA

A COMPARATIVE STUDY ON CUSTOMER SATISFACTION TOWARDS URBAN 1211 – 1216 COOPERATIVE AND PUBLIC-SECTOR BANKS

V. S. ADIGAL AND UMA VISHWAJEET TANWAR

DALIT ENTREPRENEURSHIP: A REVIEW PAPER	1217 - 1225
--	-------------

JAY RAVAL AND BINDIYA KUNAL SONI

THE MOST PROMINENT ART GALLERIES IN DELHI 1226 – 1230

PREMLATA SRIVASTAVA AND GEETIKA KAW KHER

THE ROLE OF SFCS IN THE INDUSTRIAL GROWTH OF THE STATES WITH 1231 – 1236 SPECIAL REFERENCE OF DELHI FINANCIAL CORPORATION

LACHHMAN SINGH RAWAT AND DEVESH KUMAR

ANALYSIS OF STRETCHING AND MAGNETIC PARAMETER IN A NON-LINEAR 1237 – 1243 MHD FLOW CLOSE TO A STAGNATION POINT

KUMUD BORGOHAIN, SUJAN SINHA AND MANOJ KUMAR SHARMA

THERMO-PHYSICAL PROPERTIES EFFECTS ON CONVECTIVE HEAT 1244 – 1260 **TRANSFER OF MAGNETO HYDRODYNAMICS (MHD) SLIP FLOW**

HIMANSHU CHAUDHARY^{*}, DEENA SUNIL AND VISHNU NARAYAN MISHRA

A STUDY OF NANOFLUID BOUNDARY LAYER FLOW OVER A MOVING PLATE 1261 - 1271 WITH VISCOUS DISSIPATION IN THE PRESENCE OF SATURATED POROUS MEDIUM

HIMANSHU CHAUDHARY, DEENA SUNIL AND VISHNU NARAYAN MISHRA

DOES MERGER OF SBI & ITS ASSOCIATES CREATE VALUE TO THE 1272 – 1277 **SHAREHOLDERS?**

FOUSIYA M. P AND SREESHA C. H

COMPARATIVE EVALUATION OF THERMAL AND EMISSION 1278 – 1286 CHARACTERISTICS OF EXTRACTED BIODIESEL FROM WASTE COOKING COTTON SEED OIL AND WASTE PALM COOKING OIL BLENDED WITH DIESEL

PRAKASHKUMAR PRAJAPATI AND SADANAND NAMJOSHI

MFDFA ANALYSIS OF PARTICLE PRODUCTION IN ¹⁶O-AG/BR AND ³²S-AG/BR 1287 – 1296 INTERACTIONS AT 200A GEV/C

MALAY KUMAR GHOSH

PHYSICOCHEMICAL PROPERTIES OF LEACHATE AND ASSESSMENT OF 1297–1304 HEAVY METAL IN DECOMPOSED MUNICIPAL SOLID WASTE

B. SATISH BABU, DR. SUDHAKAR G AND DR. P. BRAHMAJI RAO

OF CHOICES MADE, CHANCES TAKEN, AND CHANGES MADE, FOR BETTER OR 1305 – 1309 WORSE

MARINA JOYCE ROCHE AND DR. R. JAYAKANTH

AN EMPIRICAL STUDY OF THE PROFITABILTY ANALYSIS OF SELECTED 1310–1317 STEEL COMPANIES IN INDIA

VYSHNAVI A, RAMA L, RANJINI M. L AND KASHISH DAGA

AN ANALYSIS OF MARKETING TECHNIQUES AND SERVICES REGARDING 1318–1323 PATIENT OF SELECTED HOSPITALS

SARFRAJ AHMED AND MOHD. SHOEB

IMPACT OF SPIRITUALITY ON GREEN BUYING MEDIATED BY LOCUS OF 1324 – 1332 CONTROL

VED SRIVASTAVA, RAJ KUMAR MISHRA AND SUNEEL GUPTA

A SOCIO-CULTURAL APPROACH TO POVERTY AND PANDEMIC IN INDIA 1333–1341 AGAINST THE GLOBAL BACKDROP

SREEMANTA SARKAR, SUBHADEEP RAY AND DEBDAS RAKSHIT

THE PARADIGM SHIFT FROM TRADITIONAL LEARNING TO DIGITAL 1342–1346 EDUCATION PLATFORMS IN INDIA DUE TO COVID 19: A REVIEW OF LITERATURE

AMBIKA BHATIA AND AYUSHI ARORA

IMPACT OF DIGITAL DIVIDE IN HIGHER EDUCATION 1347 – 1352

DIPJYOTI DAS

BARGAIN HUNTERS TO VALUE SEEKERS – PSYCHOLOGY OF NUMBER 1353 – 1356 **PRICING (NEUROMARKETING)**

FEMI NAVAS. M AND SHILPASHREE C. R

A GLOBAL PERSPECTIVE OF ORGANIC FARMING MOVEMENTS: A REVIEW 1357 - 1361DEEPAK SRIVASTAVA AND PRABHAT K DWIVEDI FUTURE OF INDIAN CRYPTOCURRENCY 1362 - 1367MANJIT KAUR AND KAVITA AGGARWAL AN INSIGHT INTO THE EXISTING OF HUMAN RELATIONSHIP AROUND THE 1368 – 1371 FAMILY IN KAMALA MARKANDAYA'S NOVELS K. ABIRAM AND DR. M. SHAMEEM MEDICAL IMAGE PROCESSING TECHNIQUE FOR ANALYSING CT SCAN 1372 - 1378IMAGES BY USING IMPROVED MARKER-CONTROLLED WATERSHED **ALGORITHM** TAHAMINA YESMIN AND PINAKI PRATIM ACHARJYA UNIOUE FIXED-POINT RESULTS IN INTUITIONISTIC FUZZY METRIC SPACES 1379 – 1393 WITH AN APPLICATION TO FREDHOLM INTEGRAL EQUATIONS A. MURALIRAJ AND R. THANGATHAMIZH FIXED POINT THEOREMS IN INTUITIONISTIC FUZZY b-METRIC SPACES 1394 - 1404 A. MURALIRAJ AND R. THANGATHAMIZH FACTORS AFFECTING THE CUSTOMERS OF HOTEL: AN EMPIRICAL STUDY IN 1405 – 1410 ANDHRA PRADESH V. GIRIBABU AND HEMANT KUMAR SHASTRY **STABILITY OF EQUILIBRIUM POINTON CONTROL BASED ON FRACTIONAL-** 1411 – 1419 **ORDER TIME DELAYED NEURAL NETWORKS** S. MEHAR BANU AND S. RAMADEVI FREE AND OPEN-SOURCE SOFTWARE FOR COMPUTATIONAL CHEMISTRY 1420 - 1442RUPINDER PREET KAUR AND HARPREET SINGH A REAL TIME DEEP LEARNING BASED SOCIO-ECONOMIC STATUS 1443 - 1454ESTIMATION USING STATICAL DATA ON RAJAHMUNDRY A.P. INDIA V. BALASANKAR AND P. SURESH VARMA CAUCHY SEQUENCE IN FUZZY BI-NORMED LINEAR SPACES 1455 - 1458A. R. MANIKANDAN SELF-SUSTAINABLE WIRELESSLY EMPOWERED MONITORING SYSTEM FOR 1459 – 1462 **URBAN FARMING USING IOT** DEVESH MISHRA, PRAKHAR YADAV, AKHILESH KUMAR PANDEY, TANUJA PANDEY, KRISHNA KANT AGRAWAL AND RAM SUCHIT YADAV

DETECTING LONG RANGE FLUCTUATION WITH DFA AND MFDFA METHODS 1463 – 1470 IN CASE OF PARTICLE PRODUCTION IN ³²S-AG/BR INTERACTIONS AT 200A GEV/C

MALAY KUMAR GHOSH

EXASPERATING NON-NEGATIVE INTEGER SOLUTIONS FOR AN EXPONENTIAL 1471 – 1475 **DIOPHANTINE EQUATION**

 $(3u^2+5)^p+(6u^2+11)^q=w^2$

V. PANDICHELVI AND B. UMAMAHESWARI

FACTORS AFFECTING THE QUALITY OF PRONUNCIATION: A CASE STUDY OF 1476 – 1484 **ENGLISH LANGUAGE STUDENTS WITH TAMIL BACKGROUND**

A. MOHAMED MUSTAFA AND S. KHALEEL AHAMED

A ROADMAP ON THE DEVELOPMENT OF TOURISM IN KARNATAKA- AN 1485 – 1495 EMPIRICAL STUDY

H. RAJASHEKAR AND PUNITHA S. J

CONSTRUCTION OF NEW STRUCTURE OF 4-REGULAR PLANAR GRAPH AND 1496 – 1499 ITS APPLICATIONIN LATTICE STRUCTURE

ATOWAR UL ISLAM, KASHYAP MAHANTA AND ANUPAM DUTTA

A STUDY ON TEACHERS ATTITUDE TOWARDS ENVIRONMENTAL EDUCATION 1500 – 1503 AND SUSTAINABLE DEVELOPMENT OF SECONDARY SCHOOL TEACHERS OF CHARAIDEO DISTRICT OF ASSAM

PALLAB JYOTI BORUAH

MATHEMATICAL MODEL FOR OPTIMAL PURCHASE OF COMMODITIES AT A 1504 – 1508 DISASTER RELIEF CENTRE BY USING INVENTORY CONTROL SYSTEM

SHUBHAM KUMAR, RAJAN SINGH AND B. K. SINGH

TRIPLE SQUARE SUM CORDIAL LABELING OF SUBDIVISION FOR VARIOUS 1509 – 1516 **QUADRILATERAL SNAKE GRAPHS**

J. EBI SUJITHA, J. GOLDEN EBENEZER JEBAMANIAND D. PREMALATHA

LOGISTIC REGRESSION MODEL TO COMPREHEND ENTERPRISE 1517 – 1520 PERFORMANCE

ASHOK SHARMA AND MINAM YOMSO

DEVELOPING ENERGY EFFICIENT OPAQUE WALL ASSEMBLY UNIT FOR 1521 – 1528 **WARM-HUMID AND HOT-DRY CLIMATE**

ROSHNI UDYAVAR YEHUDA, VIKRAM SARAPH, RAJEEV TAISHETE, TWISHI SHAH, TRUPTI KAMAT, LALIT DAVATE

FINANCIAL APPRAISAL OF RRBS: EVIDENCE FROM INDIAN RURAL BANK 1529 – 1538

MD. WAKIL AHMAD AND BADIUDDIN AHMED

POSITIVE AND NEGATIVE IMPACT OF COVID ON DIFFERENT SECTORS OF 1539 – 1554 **INDIAN ECONOMY**

ASHOK H. S, SINDHUJA C. V, GOWRISHA AND DHARANI S

DESIGN AND DEVELOPMENT OF INSTRUMENT-LESS VIRTUAL ASSISTIVE 1555 – 1561 **MUSICAL KEYBOARD DEVICE FOR VISUALLY CHALLENGED PEOPLE**

KADGE J. N

ASSESSING THE USE OF TiO₂-LADEN LIGHT-WEIGHT FOAMED CONCRETE AS 1562 – 1574 A MODE OF CONSTRUCTION WASTE AND AIR POLLUTION MANAGEMENT

RAVI GABA AND SANJAY SHARMA

ASSESSING THE IMPACTS OF USING DEMOLITION WASTE ON DIFFERENT 1575 – 1587 PROPERTIES OF FOAMED CONCRETE: CENTRAL COMPOSITE DESIGN-BASED OPTIMIZATION OF PARAMETERS

RAVI GABA AND SANJAY SHARMA

FOR AN INVENTORY POLICY, LINEAR DEMAND ACROSS CERTAIN 1588-1595 PERISHABLE PRODUCTS WHICH IS TIME DEPENDENT AND PERMISSIBLE DELAYS IN THE PAYERS

JASVINDER KAUR AND MUKUL JAIN

Received: 5th January 2022

Revised: 19th January 2022

Accepted: 10th February 2022

DEVELOPING ENERGY EFFICIENT OPAQUE WALL ASSEMBLY UNIT FOR WARM-HUMID AND HOT-DRY CLIMATE

ROSHNI UDYAVAR YEHUDA, VIKRAM SARAPH, RAJEEV TAISHETE, TWISHI SHAH, TRUPTI KAMAT, LALIT DAVATE

ABSTRACT

The thermal characteristics of the building envelope comprising mainly of opaque walls, roof and fenestrations have an incremental effect on the building's heating and cooling load and subsequently, the energy consumption. The Energy Conservation Building Code (ECBC) 2017 has prescribed maximum thermal transmittance values for opaque wall assembly (OWA) to achieve minimum standards of energy efficiency.

In this context, research was conducted on developing an energy-efficient OWA for hot-dry and warm-humid climate zone, in collaboration with industry partners considering sustainability, techno-economic feasibility and high thermal performance. A theoretical framework was created and benchmarks were set to evaluate 25 different design mixes which were developed in the laboratory using 150mm cubes. The block mixes were tested for compressive strength, density, water absorption, drying shrinkage and thermal conductivity as per the IS codes. Based on the benchmarking, 9 design mix prototypes were shortlisted for full-scale production in the block plant. Of these 2 were shortlisted for testing in full-scale models in Dombivli (warm-humid climatic zone) and Shrirampur (hot-dry climatic zone). Structural engineers, material scientists, architects and industry experts were involved throughout the review and consultation process over a 3-year period. The final results showed that it is possible to develop sustainable opaque wall assembly blocks with superior thermal performance than base case by 11% in hot-dry climatic zone and 0.03% in warm-humid climatic zone.

Keywords: Opaque Wall Assembly, Energy Efficiency, Thermal transmittance, Warm- humid climate, Hot-dry climate

1. INTRODUCTION

For centuries, buildings in India have been using burnt clay bricks as a material for external and internal walling of buildings. These blocks are not sustainable and have manifold impacts on the environment. The primary material i.e., clay is taken from agricultural fields rendering them fallow, the process using river sand which is finite and its extraction process affects aquatic life. The process of burning the bricks in kilns causes severe air pollution and the release of greenhouse gases – carbon di oxide and hazardous carbon monoxide gas especially in peri-urban areas where they are produced.

Figure 1: Walling materials currently used as per the survey conducted amongst the stakeholders of building industry.

Lastly, bricks are used along with cement plaster in buildings, which is found to have a thermal transmittance of 1.7 to 1.8 W/m^2K . This is much higher than the ECBC norms(BEE, 2018) of 0.4 W/m^2K . Hence, buildings using these materials tend to have higher cooling leads due to heat gain from the envelope. And this increased consumption occurs throughout the operational life of the building.

Only in recent years, have alternatives been developed to brick walls. These include lightweight and energy efficient AAC blocks with thermal transmission values between 0.7 to 0.8 W/m²K and concrete blocks with thermal transmission values above 2 W/m²K. Hence, a dire need for alternative walling material was felt.

The project aimed at developing opaque wall assembly with following characteristics:

- Low embodied energy and sustainable
- Modular which provides flexibility and ease of assembly
- ECBC compliant
- Economical (based on life-cycle costing)

2. Review of Literature for Study of Raw Materials

Materials for OWAs were shortlisted based on thermal properties and low embodied energy. Shortlisted materials included under cementitious category: Grit, Cement, Lime, Mica, Bentonite, under organic filler materials: Bagasse, Rice Husk, Rice Straw, Bamboo Sticks, under the industry by-products: GGBS, Fly Ash, Vermiculite. Table 1 provides a summary of the industrial and agricultural as well as phase change raw materials that were reviewed along with structural and thermal properties. Usage of non-conventional materials like vermiculite, bentonite, dolomite, mica, etc. were also studied.

N o.	Type of Waste & Percenta ge used	Type of Block	Dimen sion in MM	Firing/ curing	Compre ssive Strength (MPA)	Wa ter Ab sor pti on %	Dry Dens ity	The rma l Per for ma nce	Various test conducted
1	Fly Ash & GGBS (20%)	Solid	230 X 150 X 85	28 Days in open air tempera	24	8.2 5	1810		Density, compressive and flexural strength, water absorption (K, Venugopal, 2016)
		Hollo w (35%)	304 X 150 X 110	ture	17	9.1	1750		
2	Rice husk (30%)	Solid block	150 X 150 X 150	6 days Cured in water tank at 20± 2 °C	17.6	5.4 8	1797	0.7 1 W/ mK	Density, compressive and Freezing thawing resistance, water absorption, thermal conductivity (Sisman et al., 2011)
3	Wood Ash (15%) and Foundar y sand	Solid block	150 X 150 X 150		28.14	<1 0%	2300		Compressive, split tensile, flexural strength, water absorption, carbonation, drying shrinkage. (Batt & Garg, 2017)
4	Cenosph ere	Light weight block	100 X 100 X 100	cured in a fog room with tempera tures ranging from 28 to 30 ° C	small decrease or even an increase in compres sive strength		at least 25% in the dry densi ty		Compressive, split tensile strength, Dry density (Rheinheimer et al., 2017)
5	Silica Fume (25%)	Solid block	150 X 150 X 150	Cured in water ta nk at 20± 2C	41.4		1351 .2	0.4 777	Density, compressive strength, porosity and thermal conductivity (Farhan et al., 2012)
	Microw ave	Solid block	150 X 150 X	Cured in	35.6		1344 .56	0.4 273	

Special Issue on Recent Research on Management, Applied Sciences and Technology

	Incinera ted Rice Husk Ash (25%)		150	water ta nk at 20± 2 C				
6	Rice Husk Ash (20%)	Solid block	150 X 150 X 150		6.88		500- 2100	Density, compressive strength, costing (Sangeetha, 2016)
7	Rice Husk Ash (20%)	Solid block	150 X 150 X 150		16.03	1.8 6		Compressive, split tensile, flexural strength, water absorption (Krishna et al., 2016)
8	Saw Dust Ash (5%)	Solid block	150 X 150 X 150		32.44	1.2 45	2475	Density, compressive strength, water absorption (Malik et al., 2015)
9	Dolomit e (10%)	Solid block	150 X 150 X 150		31.24			Compressive,splittensile,flexuralstrength (Preethi&Arulraj, 2015)
1 0	Expande d Perlite Aggrega te (10%)	Light weight block	100 X 100 X 100	wet stack 28 days curing	37.5	4.0 7		Compressive,splittensilestrengthApparentPorosity,NormalandcrackedSorptivity(Khonsari etal., 2010)

Table 1: Review of researches done in the field

3. FORMULATION OF MIX DESIGN:

A Sustainability Parametric Evaluation tool (SPET) for sustainable building materials based on 47 criteria under 5 major heads namely, safety, ease of use, physico-chemical properties, sustainability and market factor, was devised. This was used, for scoring the sustainability ranking of building materials as well as individual raw materials. Materials for OWAs were shortlisted based on thermal properties and SPET score. Shortlisted materials included under cementitious category: Grit, Cement, Lime, Mica, Bentonite, under organic filler materials: Bagasse, Rice Husk, Rice Straw, Bamboo sticks, under the industry by-products: GGBS, Fly Ash, Vermiculite. Materials were shortlisted based on availability in India. Limestone, Rice Straw and Rice Husk were found to be available in plenty. Usage of Bamboo, also had potential social benefits through employment and livelihood in rural areas.

The shortlisted innovative materials were categorized as base, binder and filler based on physio chemical properties, and 24 unique mix designs were formulated using the dry mixing process by percentage of weight with Godrej (Industry Partner) M10 concrete blocks as base.

Special Issue on Recent Research on Management, Applied Sciences and Technology

4. Performance Benchmarks for the New Owas:

The formulated mix deigns were cast into 150mm cube in lab and tested for compressive strength, water absorption and density after 7 days, 14 days and 28 days respectively of curing. The blocks were then cast into 1m x 1m wall assemblies to be further tested for their thermal performance in a specially designed 'Hot guarded box' testing facility.

As these blocks were different from conventional OWA, target parameters for new design mix were finalized in consultation with experts and the industry partner. The benchmarking was derived from various IS standards related to blocks, masonry and materials as follows:

- **1.** Compressive strength 3.5 5 N/mm2
- 2. Density 1500 kg/cu.m (brick)
- **3.** Water absorption <10%
- **4.** Drying shrinkage -0.05
- 5. Thermal Transmittance -0.4 W/m2K (ECBC)

5. Shortlisting and Improvisation of Mix Designs:

5.1 Screening 1: Amongst the 24 mix designs, the mixes having jaggery were eliminated, as they faced major issues during casting of blocks. The testing of blocks for compressive strength, density and water absorption was done as per IS standards in the QC lab of industry partner. Nine mix designs were shortlisted based on the set performance benchmarks.

5.2 Screening 2: The 9 mix designs were revised to improvise the performance of these blocks with respect to structural and thermal performance and cast into blocks of size 390 mm x 190 mm x 140 m (production size of concrete blocks).

At this stage, in addition to the compressive strength, density and water absorption, thermal performance and drying shrinkage were also measured.

For measurement of the Thermal Transmittance, a hot guarded box was designed in which $1m \ge 1m$ wall of the shortlisted prototype was subjected to a temperature difference on either side of more than 15° C within the hot guarded box after which testing using a U- value meter is conducted for every 15-minute interval. The temperature differential was maintained using a sensor and cut-off device. The surface temperature and radiant temperature were also measured so as to understand radiant heat properties of the material.

Figure 3: Thermal performance Testing Facility – Hot guarded box

The Drying shrinkage tests were done through a certified third-party lab. As shown in the table below, the two best performing Mix designs were selected for full scale prototype testing – one each in hot-dry and warm-humid climate. The criteria for selection for the different climate zones was based on material availability and thermal transmittance (lower U-value for hot dry climate was considered).

Name of block	Constituents	Compressive Strength (N/mm2)	Density (Kg/m3)	Water Absorption (%)	Weight of block (Kg)	Thermal Performance U Value (W/m2)	Drying and Shrinkage (%)
AE2M1	Cement, Lime, Metal 0, Metal 1, Mica Powder, Bamboo mat	5.72	2053	5.13	19.9	2.5	-
AE2M3	Cement, Lime, Metal 0, Metal 1, Mica Powder, Shredded Bamboo	5.75	2203	6.44	21.62	-	0.03
AE3M1	Cement, Lime, Metal 0, Metal 1, Mica Powder, Rice Husk	5.7	1928	5.24	18.72	1.4	0.03
BE2M1	Cement, Bentonite, Metal 1, Mica Powder, Rice Husk, Dolomite	1.52	1590	7.02	15.1	3.07	0.04
CE2M1	Cement, Laterite dust, Metal 1, Mica Powder, Vermiculite, GGBS	2.67	1666	5.6	16	1.03	-
CE2M4	Cement, Laterite dust, Metal 1, Mica Powder, Vermiculite, GGBS	2.16	1295	5.16	12.5	4.55	0.04
CE3M3	Cement, Laterite dust, Metal 1, Mica Powder, Vermiculite, Dolomite	1.96	1739	5.36	17	0.7	0.04
DE3M1	Lime, Fly-ash, Metal 1, Mica Powder, Rice straw powder, GGBS	2	1870	8.5	19.26	8.11	-

Table 2: Results of shortlisted Mix Design

Improvisation of finalized mix designs

- AE3 M1 The compressive strength and other parameters were found satisfactory, while thermal performance needed to be improved. Accordingly, the quantity of Metal 1 and metal 0 were reduced, replaced by increasing the percentage of Mica.
- CE3 M3 The thermal performance and other parameters were found satisfactory but compressive strength needed to be improved. Accordingly, the quantity of Mica and Vermiculite were reduced, replaced by increasing the percentage of Cement, Laterite dust and Metal 1.

6. Thermal Testing of full-Scale Prototypes

Full-scale models (100 sq. ft. area and 1000 cu. ft. volume) designed based on literature review, were erected 2 each in Shrirampur (hot dry climate) and Dombivli (warm humid climate), one each in each climate zone being base case.

Base case in warm-humid was made of AAC blocks and base case in hot-dry climate was made of clay-fired bricks. For the Design or Proposed case, CE3M3 was shortlisted for warm-humid climate while AE3M1 was shortlisted for hot-dry climate.

For analysis of the thermal performance of the OWAs in the full-scale prototypes, following thermal properties were measured:

Special Issue on Recent Research on Management, Applied Sciences and Technology

- 1. Surface temperatures: 48-hour surface temperature recorded using data logger and thermocouple sensors to obtain ΔT and calculate U-value.
- **2.** Mean Radiant Temperature (MRT): 12-hour hourly MRT was calculated using formula (Goldman 1978), for which globe temperature and dry bulb temperature were measured using a digital globe thermometer and air velocity using a calibrated anemometer.
- **3.** Thermal transmittance: U value was also measured using U-value meter and the hot Guarded box as well as from thermal conductivity tests using certified third-party laboratory.

7. Findings and Discussion

a) Warm Humid climate: U-value of design blocks was in the range of 0.77 to 1.21. Its thermal performance was close to AAC blocks but having much lower embodied energy.

The internal and external wall surface temperatures of both prototypes i.e., design and base has nearly similar reading.

The walling materials of design case, thermally works equivalent to the AAC blocks, i.e. the base case walling but it has a low embodied energy having no autoclaving and other intensive processes required in preparing AAC blocks.

The average mean radiant temperature of base case was cooler than the design case by half a degree Celsius.

10 5 0

MEAN RADIANT TEMPERATURE

b) Hot and Dry Climate:

U-value of design blocks was in the range of 1.18 to 1.28. Its thermal performance was much better than bricks in the base case. The external surface temperatures of wall in design case was found to be around 5° C lower as compared to that of base case. This shows that the design case wall assembly reflects more heat as compared to base case walling i.e., bricks. This could be predominantly due to color and textures of blocks.

The difference between the external and internal wall surface temperature of design was around 2° C whereas in base case it is around 5° C.

Plate 2: Recording hourly measurements

Figure 9: Mean Radiant temperature.

The average of mean radiant temperature of design case was lower by 2.5° C than that of base case. This observation is in synchronization to radiant wall temperature reading of both the cases.

8. CONCLUSIONS

Both OWAs performed better than brick and concrete, the two most conventional OWAs used today. The project has shown that it is possible to develop energy efficient, low embodied energy OWAs to meet the demands of the market. The products developed are both energy efficient, cost effective and sustainable than those currently available in the market. There can be much more improvement in the product with improved design mixes, use of other alternative and waste materials to develop a product that is light weight, low cost, modular, easy to transport and energy efficient.

ACKNOWLEDGEMENTS

The project is funded by the Department of Science and Technology (DST), Govt. of India through its scheme entitled 'Initiative to Promote Habitat Energy Efficiency' (IPHEE). It is being conducted under the aegis of Science & Technology Park, Pune. Industry partner, Godrej Construction has provided the testing facilities and infrastructure and additional technical support has been provided by industry partner, Panasia Engineering Ltd., Mumbai.

REFERENCES

- 1. Batt, A. S., & Garg, A. (2017). Partial Replacement of Wood Ash with Ordinary Portland Cement and Foundry Sand as Fine Aggregate. Journal of Civil & Environmental Engineering, 07(02). https://doi.org/10.4172/2165-784x.1000272
- 2. BEE. (2018). Energy Conservation Building Code for Residential Buildings. In Ministry of Power, Government of India (Vol. 1). https://www.beeindia.gov.in/sites/default/files/ECBC_BOOK_Web.pdf
- 3. Farhan, S. A., Khamidi, M. F., Murni, M. H., Nuruddin, M. F., Idrus, A., & Al Yacouby, A. M. (2012). Effect of silica fume and MIRHA on thermal conductivity of cement paste. WIT Transactions on the Built Environment, 124, 331–339. https://doi.org/10.2495/HPSM120291
- 4. K, V. (2016). Development of Solid and Hollow Geopolymer Masonry Blocks. June. https://doi.org/10.5176/2301-394x_ace16.136
- Khonsari, V., Eslami, E., & Anvari, A. (2010). Effects of expanded perlite aggregate on the mechanical behavior of lightweight concrete. Fracture Mechanics of Concrete and Concrete Structures - High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications- B. H. Oh, et Al. (Eds), January 2010, 1354–1361.
- 6. Krishna, N. K., Sandeep, S., & Mini, K. M. (2016). Study on concrete with partial replacement of cement by rice husk ash. IOP Conference Series: Materials Science and Engineering, 149(1). https://doi.org/10.1088/1757-899X/149/1/012109
- 7. Malik, M. I., Jan, S. R., Peer, J. A., Nazir, S. A., & Mohammad, K. F. (2015). Partial Replacement of Cement by Saw Dust Ash in Concrete A Sustainable Approach. International Journal of Engineering Research and Development, 11(02), 2278–67.
- 8. Preethi, G., & Arulraj, P. (2015). Effect of Replacement of Cement with Dolomite Powder on the Mechanical Properties of Concrete. IJISET -International Journal of Innovative Science, Engineering & Technology, 2(4), 1083–1088. www.ijiset.com
- Rheinheimer, V., Wu, Y., Wu, T., Celik, K., Wang, J., De Lorenzis, L., Wriggers, P., Zhang, M. H., & Monteiro, P. J. M. (2017). Multi-scale study of high-strength low-thermal-conductivity cement composites containing cenospheres. Cement and Concrete Composites, 80, 91–103. https://doi.org/10.1016/j.cemconcomp.2017.03.002
- 10. Sangeetha, S. P. (2016). Rice Husk Ash Sandcrete Block as Low Cost Building Material. Int. Journal of Engineering Research and Application, 6(6), 46–49.
- 11. Sisman, C. B., Gezer, E., & Kocaman, I. (2011). Effects of organic waste (rice husk) on the concrete properties for farm buildings. Bulgarian Journal of Agricultural Science, 17(1), 40–48.
- 12. Bureau of Indian Standards. (2016). National Building Code of India 2016 (Vol. II). New Delhi.
- 13. Thermal Performance of Opaque Walling Assemblies in Warm-Humid Climate of India by Dr. Roshni Udyavar Yehuda, Ar. Vikram Saraph, Ar. Rajeev Taishete and Dr. Ashok Joshi, Science and Technology Park, Pune; Institute of Environmental Architecture and Research; ISHRAE Journal -Air Conditioning and Refrigeration Journal 2021 January- February (AC&R), 24(1), 36-41

AUTHOR DETAILS:

ROSHNI UDYAVAR YEHUDA¹, VIKRAM SARAPH², RAJEEV TAISHETE³, TWISHI SHAH⁴, TRUPTI KAMAT⁵, LALIT DAVATE⁶

^{1,2,4,5,6}Science and Technology Park, University of Pune

³Institute of Environmental Architecture and Research

MuK Publications & Distributions

F-2562, Palam Vihar Gurgaon-122017 (Haryana) E-mail: mukpublications@gmail.com https://www.mukpublications.com